ВЛИЯНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ НА ПИЩЕВОЙ РЕЖИМ ПОЧВЫ, УРОЖАЙНОСТЬ И КАЧЕСТВО ЛУКА РЕПЧАТОГО

Полтавченко Ирина, Гуманюк Алексей, доктор сельскохозяйственных наук, Майка Лилия, Коровай Валентина, «Приднестровский Научно-Исследовательский Институт Сельского Хозяйства»

To obtain more than 50 t/ha of onion of good quality, it necessary to apply drip irrigation with full irrigation norms with 5-day inter-irrigation periods should be applied against the background of applying $N_{180}P_{80}$ kg of dw / ha of mineral fertilizers.

Key words: onion, drip irrigation, fertilizer dose, inter-irrigation period, irrigation norm, nitrates.

ВВЕДЕНИЕ

Климатические ресурсы Молдовы в сочетании с орошением способны обеспечивать высокую урожайность репчатого лука. Тем не менее, сегодня средняя урожайность этой культуры не превышает 7,5 т/га [7]. Причиной тому, по всей вероятности, является несбалансированность водного и пищевого режимов почв. Лучше обстоят дела в России, Казахстане, на Украине где накоплен огромный опыт по оптимизации этих факторов [1, 3, 6]. Однако использовать их рекомендации без дополнительных исследований в местных условиях нельзя. Любую технологию надо адаптировать к почвенно-климатическим условиям зоны, где предполагается ее использование.

В связи с этим, для определения оптимальных доз минеральных удобрений и режимов орошения лука репчатого на капельном орошении, в 2013-2016 гг. на полях *Приднестровского НИИ Сельского Хозяйства* был заложен многофакторный опыт.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Почва опытного участка — чернозем обыкновенный, тяжелосуглинистый. Содержание гумуса в пахотном слое — 2,4%, наименьшая влагоемкость 0-50 см слоя почвы равна 25,3%. Опыты проводили с луком сорта Халцедон, предшественник — томат безрассадный. Посев трехстрочный по схеме 90-50 см. Повторность опыта трехкратная. Исходя из предыдущих исследований, проведенных при дождевании, предполивная влажность почвы была принята равной 80% от HB.

Схема трехфакторного опыта включала в себя следующие факторы и градации:

Фактор А. Межполивной период: 1) Без орошения; 2) 3 дня; 3) 5 дней; 4) 7 дней.

Фактор Б. Величина поливной нормы: 1) Полная норма (m); 2) Сокращенная на 30% норма (0,7 m).

Фактор В. Удобрение: 1) Без удобрений; 2) $N_{80}P_{40}$; 3) $N_{130}P_{60}$; 4) $N_{180}P_{80}$.

Статистическую обработку урожайных данных проводили по методике Доспехова Б.А. [2].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

В сельскохозяйственном производстве наряду с орошением, внесение удобрений является одним из основных человеческих факторов, влияющих на плодородие почв и на продуктивность культур.

Проведенные исследования позволили нам установить, что в богарных условиях и при капельном орошении пищевой режим почвы складывался по-разному. В большей степени это касается азотного режима почвы.

Без орошения на неудобренном варианте наблюдали некоторое снижение нитратов (с 29 до 11-22 мг/кг) в течение вегетации, а при применении минеральных удобрений складывалась

обратная картина. Содержание нитратов увеличивалось не только с ростом доз применяемых удобрений, но и в течение вегетации. Это свидетельствует о том, что из-за дисбаланса между водным и пищевым режимами почвы растения развивались слабо в связи с чем минерализация азота преобладала над потреблением.

Совершенно иной была картина при капельном орошении. Содержание нитратов также зависело от доз удобрений, но в меньшей степени, чем в варианте без орошения. В силу преобладания потребления азота над его мобилизацией из почвы, количество нитратов с весны до осени значительно снижалось — от 31-89 до 7-20 мг/кг (рис. 1). Содержание мобильных фосфатов и обменного калия от орошения и доз применяемых минеральных удобрений зависело в меньшей степени.

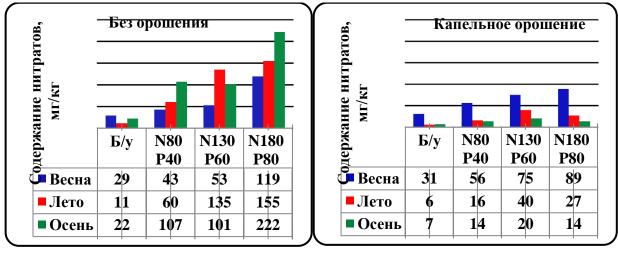


Рисунок 1. Динамика нитратов в варианте без орошения и при капельном орошении.

Различно складывающийся водный и пищевой режимы почвы существенно отразились на продуктивности лука. Минимальная в опыте урожайность (14,7 т/га) получена в варианте без орошения и без удобрений. В среднем применение минеральных удобрений повышало продуктивность лука на 37-41%, но достоверных различий от их увеличения с $N_{80}P_{40}$ до $N_{180}P_{80}$ не получено, поэтому можно сделать вывод, что без орошения повышенные дозы нецелесообразны.

Максимальная урожайность (52,2 т/га) получена при проведении капельного орошения полной поливной нормой с межполивным периодом 7 дней и при внесении удобрений в дозе $N_{180}P_{80}$, что в 2,5 раза выше, чем в аналогичном варианте (20,8 т/га) без орошения (табл. 1; рис. 2).

При орошении в процентном отношении удобрения обеспечивали меньшие прибавки урожайности, чем без орошения — 14-25%, хотя в физическом весе чаще всего они были выше. Таблица 1. Влияние орошения и минеральных удобрений на урожайность лука, m/га (среднее за 2013-2016 гг.)

Вариант орошения		Поливная	Дозы удобрений				
			<i>~</i> /	N. D.	N D	N D	Сред-
Способ	Межпо-ливной	норма	б/у	$N_{80}P_{40}$	$N_{130}P_{60}$	$N_{180}P_{80}$	нее.
орошения	период, дни						
Без орошения		-	14,7	20,3	20,2	20,8	19,0
Капельный	3	m	41,4	49,4	47,7	47,7	45,6
		0,7 m	35,2	41,8	40,5	42,3	40,0
		среднее	38,3	45,6	44,1	45,0	42,8
	5	m	44,0	46,4	49,9	51,6	48,0
		0,7 m	40,3	44,9	45,0	50,3	45,1
		среднее	42,2	45,6	47,5	51,0	46,6
	7	m	38,5	40,8	45,3	52,2	44,2
		0,7 m	36,0	44,7	47,5	50,1	44,6
		среднее	37,2	42,7	46,4	51,1	44,4
Среднее		ee	39,2	44,6	46,0	49,0	44,6

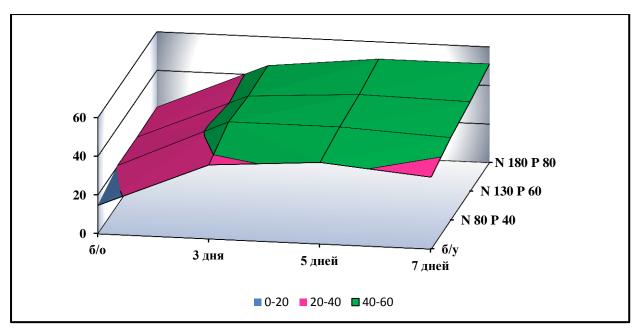


Рисунок 2. Оптимальные условия для получения различных уровней урожайности.

В среднем по фактору «межполивной период» максимальная урожайность (46,6 т/га) получена при поливах через 5 дней, а по фактору «поливная норма» - при поливах полными нормами (45,9 т/га). Недобор урожая при поливе сокращенными на 30% поливными нормами составлял 9% (рис. 3).

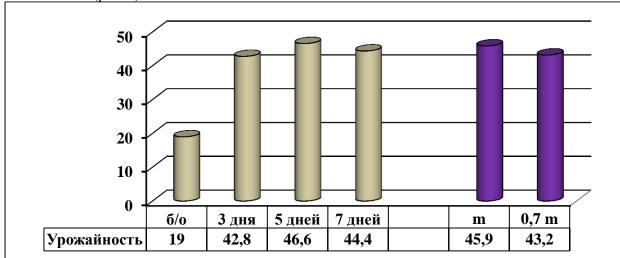


Рисунок 3. Влияние межполивных периодов и поливных норм на урожайность лука.

В последнее время общество все чаще обращает внимание на качество продукции, особенно на содержание в ней нитратов.

По данным российских ученых [4, 5] содержание нитратов в луковицах увеличивается не от повышения доз удобрений, а от снижения уровня предполивной влажности почвы, который должен быть не ниже 80% НВ.

Наши опыты показали аналогичные результаты. Накопление нитратов в луковицах в большей степени зависело от орошения, чем от доз минеральных удобрений (рис. 3). На варианте без орошения их содержание было максимальным - 71-116 мг/кг. При капельном орошении в луковицах накапливалось меньше нитратов - 52-76 мг/кг при ПДК = 80 мг/кг, что в среднем на 55% ниже, чем в варианте без орошения. Дозы удобрений также повышали содержание нитратов в продукции, причем более значимо в варианте без орошения.

Однако данные проведенных опытов показали, что накопление в продукции нитратов зависит не только от доз удобрений и от орошения в целом. Очень важно как часто проводятся поливы, и какими нормами. Минимальное количество нитратов в продукции (59 мг/кг)

накапливалось при самых частых поливах – через 3 дня (рис. 4). Аналогичным было действие и величины поливной нормы – при поливах полными нормами в продукции накапливалось на 40% нитратов меньше, чем при сокращенных.

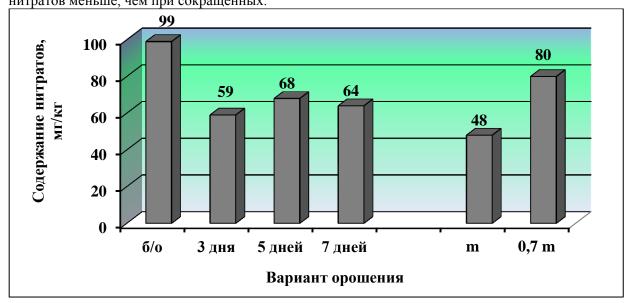


Рисунок 4. Влияние межполивных периодов и поливных норм на содержание нитратов в продукции.

На неполивных участках применение удобрений повышало содержание сухих веществ на 3-9%, а при орошении – на 4-6% снижало его. Аналогичными были закономерности и по содержанию общего сахара.

По влиянию орошения и удобрений на содержание витамина С в луковицах сказать что либо трудно, так как четких закономерностей не обнаружено. Можно только констатировать, что качество продукции существенно не снижалось.

Библиография:

- 1. Айтбаев, Т.Е.; Нурмаханова, Г.; Нусипбай, К. Эффективность удобрений в системе капельного орошения огурца и лука в условиях юго-востока Казахстанаю В: Известия Национальной академии наук Республики Казахстан, 2015, № 1, с. 23-27.
- 2. Доспехов, Б.А. Методика полевого опыта. Москва: Колос, 1985. 416 с.
- 3. Дубенок, Н.Н.; Богданенко, М.П.; Выборнов, В.В. *Урожайность и качество лука при капельном орошении в ранней культуре*. В: Картофель и овощи, 2011, № 5, с. 12.
- 4. Дубенок, Н.Н.; Бородычев, В.В.; Болкунов, А.И. Возделывание перспективных гибридов лука при капельном орошении. В: Достижения науки и техники АПК, 2010, № 10, с. 18-21.
- 5. Ляшко, М.У.; Пивень, Е.А.; Шуравилин, А.В. *Рост, развитие и качество репчатого лука при капельном орошении в условиях юга Непала*. В: Теоретические и прикладные проблемы агропромышленного комплекса, 2014, № 1(18), с.18-21.
- 6. Шатковский, А.П.; Васюта, В.В.; Журавлев, А.В.; Черевичный, Ю.А. *Режимы капельного орошения,* водопотребления и урожайность раннего лука в зоне степи Украины. В: Овощи России, 2015, № 2 (27), с. 16 -20.
- 7. http://statbank.statistica.md.